Tagged: application

Product Design using Biomimicry in a nutshell!

Two weeks to finishing my first academic year, I’m feeling inspired to talk about our course on developing a product using biomimicry; Michael introduced it here. For this course, we worked with students from the Cleveland Institute of Art and Nottingham Spirk. Nottingham Spirk (NS) gave us the problem and some deadlines. Milestones we had were for coming up with areas we’d like to target, developing the concepts, and finally refining our product designs.
What is the first step to go from biology to a product or vice versa? It was a bit messy for me, considering I am also still learning about many biological organisms, but I am pleased with our results and the progress we made.
First, we worked on our target audience, drawing mind maps of stakeholders and key opportunities. We divided into subgroups based on our interest in particular key opportunity areas. There was only one condition: having almost an equal number of Biomimicry Fellows from University of Akron biomimicry and designers from the Cleveland Institute of Art on every team.
And then we started… Not sure how to go about it, we looked at current products, specific issues within our key opportunity area,  as well as asknature.org, other books and papers on animal’s adaptaptions. By end of February, we were ready to give a report to NS about the issues we were targeting and organisms that could potentially help us and got their feedback.
Our next step was to develop concepts by end of March. Here, we needed to read more and actually think of a specific problem and solution. I would say, while researching current market, it was not difficult to see where we can introduce new products and what’s missing. The more challenging part was abstracting ideas from biology. We had a format to follow similar to asknature.org: it included writing first the abstracted function, then the strategy the model organism uses and finally extracting design principles. This time NS were more specific on which ideas they were interested in having us pursue and which they were not. Then it was time to form new groups based on the latest product ideas we were moving forward with. Now, for our final work, my team focused on one specific product and our concept looked to many organisms (from ducks to rabbits) for inspiration. Our final report is today. yay!
Couple of things I learned:
– It was wonderful to work in groups of various specialties (mine included industrial designer, polymer scientist, product designer and me)

– Drawing/talking about ideas helped in better grasping the biological function.

– When there is no actual structure to follow, the flexibility lends to creativity.

– Having many groups, it was interesting to see what each team has come up with and inspirations are endless.

– Designers are great in making an idea come alive and look appealing!

– There are many complicated texts in biology for non-biologists, but, knowing what function you’d like to learn about makes it much easier to research and pictures do speak 1000 words.

– I’m more excited today than when I joined the biomimicry degree.

Till next time, Happy Biomimicking!

Looking at eggs differently makes them much more than just tasty

Getting a paper published isn’t easy, so when you succeed it’s one of those days that you’re fulfilled being a PhD student. You hope more of those days will come.

This paper, freely accessible on Biology Open’s website, has been a long effort. For the biology-centered journals the paper was too technical, and for the more engineering ones it was too biological. Not wanting to admit this might be a problem particular to this paper, I think it might be a general challenge for Biomimicry-focused research. The goal isn’t necessarily to answer a very in-depth biological question, nor to engineer an entirely new system, but rather to understand biological strategies well enough that they can inspire new designs. I believe with the growing Biomimicry community, there either needs to be a broadened focus of current journals or the formation of new, biomimicry-centered journals that realize the interdisciplinary nature of biomimicry research.

Figure1-pessFor the study titled “The cuticle modulates ultraviolet reflectance of avian eggshells” hidden patterns of eggshells were visualized with a scanning electron microscope (SEM) and UV reflectance was measured before and after etching the cuticle, the outer most layer present on some eggshells. What triggered this research was the observation that some eggshells have very high UV reflectance, and the interest in how this could lead to new UV-protective materials.

The high energy of UV radiation hurts; we’ve all suffered from sunburn after a sunny, summer day. Many materials, including our skin, are UV-sensitive and need to be protected from high sun exposure. This is also true for avian eggshells, as the developing embryo can be damaged by UV light. It has been speculated that the colours of eggshells can act as a sun barrier because the pigments can absorb UV light. But what about white eggshells that lack pigmentation? This study shows that the cuticle absorbs UV light. This outer layer has a different chemical composition than the rest of the eggshell, and includes proteins and calcium phosphates that can selectively absorb UV light.

Eggshells are a great model system for inspiring innovative materials, because they are almost entirely made of calcium carbonate, a material that is totally harmless and naturally available in abundance. Next time you eat an egg, you might look at it differently.